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Radiative heat transfer in anisotropic scattering media with 
specular boundary subjected to collimated irradiation 
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Abstract 

Generalized numerical method, radiation element method by ray emission model, REM *, is applied to plane-parallel 
and anisotropic scattering participating media using the delta function approximation. The boundary can be specular 
and/or diffuse, and both collimated and diffuse incident irradiation can be specified on the boundary. REM’ can be 
applied to various thermal conditions in the medium and boundaries. Good agreement is obtained between the present 
numerical solutions using the delta function approximation and existing exact solutions, even for strong forward and 
back scattering media. The proposed method is applied to an anisotropic scattering participating medium with a specular 
surface. The effect of specular reflectivity of scattering layers subjected to obliquely collimated flux was investigated. 
v  1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
01 coefficient of Legendre polynomial I’,@,), equations 
(81, (36) 
AH effective radiation area. equation (6) 
F;f, absorption view factor. equation (19) 
Ff,‘, diffuse reflection view factor, equation (20) 
Fl, extinction view factor, equation (17) 
Z(.u. 1~) radiation intensity 
I,, blackbody radiation intensity 
I”(s) diffuse radiation intensity 
K number of discretized angles of ray emission 
N total number of radiation elements 
n refractive index 
P,,(/c) Legendre polynomial of nth order 
q< collimated irradiation heat flux, (~7’4, Fig. 1 
ys heat generation rate per unit volume or heat flux of 
boundary surface, equation (28) 
@(.r) radiation flux at location X, equation (29) 
Q(,., heat transfer rate of irradiation to element i, equa- 
tion (21) 
Q,,, diffuse radiation transfer rate from element i, equa- 
tion (7) 
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QT., heat transfer rate of emissive power from element 
i, equation (22) 
QX,! net rate of heat transfer of element i, equation (23) 
S path length of radiation 
T temperature 
T, reference temperature 
,,‘A weight of discretized angle, Table 2 
.Y location, Fig. 1 
I, thickness of participating medium, Fig. 1. 

Greek symho1.r 
[j extinction coefficient of participating medium, K+O, 
P* apparent extinction coefficient of anisotropic media, 
equation (15), Table 1 
is( 1 -/L) dirac delta function 
AE numerical deviation from exact solution %, equa- 
tion (3 1) 
A.r thickness of radiation element, Fig. 1 
c emissivity, 1 -!Z--S2’ 
0 polar angle, Fig. 1 
0,) incident angle of collimated radiation flux, Fig. 1 
K absorption coefficient 
i wave length of radiation 
p direction cosine. cos 0 
,H~ discretized angle, Table 2 
PR dimensionless reflected flux, equation (35) 
CT Stefan-Boltzmann constant 
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ur scattering coefficient 
rR dimensionless transmitted flux, equation (34) 
s,) optical thickness of participating medium. /Is, 
d(p) phase function of scattering medium 
Y dimensionless radiation flux, equation (30) 
cc) solid angle 
Q scattering albedo of participating medium. o,/fi 
Q” corrected diffuse scattering albedo or diffuse reflect- 
ivity, equation (16), Table 1 
Q” specular reflectivity of boundary surface. Table 1. 

Suhsuip ts 

1, N values on boundary surface. Fig. 1 
exact exact solution 
i, j values of element i and.j, respectively 
.Y value of boundary surface element 
I’ value of volume element. 

1. introduction 

Radiation transfer in participating media is important 
in the design of furnaces. precision heat-transfer control 
in semiconductor processes and prediction of the effect 
of dust, CO, and other participating gases on the global 
environment. Many methods have been developed to 
solve these problems, such as the Monte Carlo method 
by Siegel and Howell [I] and Yang ct al. [?I, the discrete 
ordinate method by Fiveland [3], the discrete transfer 
tnethod by Lockwood and Shah [4], and the boundary 
element method by Bialecki [5]. However, it is difficult 
to apply these methods to complex three-dimensional 
configurations such as that used in finite element analysis. 

The author [6] introduced a new definition of view 
factors and proposed a numerical method for analyzing 
three-dimensional (3-D) arbitrary surfaces with diff‘use 
and specular reflections. Radiation transfer in a par- 
ticipating medium in a plane-parallel configuration was 
analyzed by Maruyama and Aihara [7] using the concept 
of view factors [6]. This concept was extended to the 
radiation element method by the ray emission model, 
REM’ [S]. REM’ is a generalized numerical method for 
analyzing radiation transfer in participating media and 
between specular and/or diffuse surfaces with arbitrary 
configurations and thermal conditions. 

However. REM’ can only be applied to isotropic scat- 
tering media, whereas most scattering particles are aniso- 
tropic scattering media [9]. Some numerical methods 
such as the discrete ordinate method and the P, method 
take into account anisotropic scattering. When the dis- 
crete ordinate method is applied to a complex 3-D engin- 
eering model. the ray effect [IO] is unavoidable unless a 
very large number of discrete ordinates are considered, 
Also these methods are very difficult to determine the 
radiative equilibrium temperature for a given heat trans- 

fer rate in the radiation element. The proposed method, 
REM’, can easily be applied to the above mentioned 
complex systems. If  REM’ can be applied to anisotropic 
scattering media, then various engineering and environ- 
mental problems, with complex configurations and ther- 
mal conditions, can be analyzed. 

Lee and Buckius [ 111 proposed an approximation that 
an anisotropic scattering medium is related to an iso- 
tropic one by scaling, and compared the radiation trans- 
fer in a plane-parallel system. The scaling was then 
extended to a two-dimensional (2-D) configuration [ 121. 
Wiscombe [13] proposed the delta-M method in which 
the anisotropic phase function is approximated to low 
order Legendre polynomials. Crosbie and Davidson [ 141 
proposed a similar approximation for the phase function 
using a delta function. 

In the present study, REM’ is applied to plane-parallel 
absorbing. emitting and scattering media with arbitrary 
thermal conditions in order to verify the applicability to 
anisotropic media. The surface boundary can be specular 
and/or diffuse with arbitrary thermal conditions. Diffuse 
or collimated irradiation can be applied at the boundary. 
The delta function approximation is used to scale the 
anisotropic scattering to isotropic scattering. The accu- 
racy of the proposed method is confirmed by comparing 
with existing solutions for isotropic scattering media. The 
validity of the approximation for anisotropic scattering 
is verified by comparing the result obtained with existing 
exact solutions. Radiation transfer of an obliquely inci- 
dent flux is analyzed, and the erect of specular and diffuse 
boundary surfaces is examined. 

2. REM* for a plane-parallel system 

We consider the participating medium in a plane-par- 
allel system. The spectral radiation intensity I, at r in the 
direction S can be expressed in terms of the radiation 
energy balance as follows : 

dl; (1.. S) ___- = 
dS 

- (K+U,)~,(r..f) + h-f ,,,, (7-j 

where K and g$ are the spectral absorption and scattering 
coefficients, respectively. S is the path length in the direc- 
tion .<. 4(,?’ -+ .i) is the phase function from the direction 
f’ to .f. 

Equation (1) for a plane-parallel system with cir- 
cumferential symmetry, as shown in Fig. I, can be rew,rit- 
ten as 
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Fig. I. Analysis model of plane-parallel medium 

iry = p -Z,,(x.p)+(l -O)Z,,,(7) I 
+1 1’ I, (.Y. ,l’)qQ’) dp’ 1 (2) 

L J-I J 

where p and R are the spectral extinction coefficient and 
the scattering albedo of the medium, respectively. p is the 
direction cosine, p s cos 8, and p’ is defined as /l’ = S’ * .i. 

Considering the ith participating radiation element, 
we assume that each radiation element is at a constant 
uniform temperature r,. and its refractive index II and 
heat generation rate per unit volume q,, , are also con- 
stant and uniform throughout the element. A ray passing 
through the radiation element attenuates by absorption 
and part of the ray is scattered. The ray is separated into 
absorbed, scattered and transmitted fractions. Moreover. 
it is assumed that the scattered radiation is distributed 
uniformly over the element. 

As has been discussed by the author [8], the original 
REM’requires that radiation scattered and emitted from 
the participating media be isotropic. For anisotropic scat- 
tering media, we introduce an apparent extinction 
coefficient fl*, and thus, a corrected scattering albedo O* 
by introducing the delta function approximation [14]. 
Details of the approximation and its validity are dis- 
cussed in the following section. With this approximation, 
an anisotropic scattering medium can be treated as an 
isotropic scattering one. The third term on the right hand 
side of equation (2) is approximated [XJ as 

where If’(x) is the average diffuse radiant intensity, i.e., 
the sum of the emitted and scattered radiant intensities 
[S]. Existing methods for analyzing radiation transfer in 
a plane-parallel system treat the participating medium 
and the boundary surfaces in separated ways. However, 
the author has pointed out that the relationship between 

the transmitted and diffusely scattered rays is the same 
as that between specular and diffuse reflections [6, 151. In 
order to generally describe the boundary surfaces and 
participating media, the diffuse reflectivity of the surfaces 
and the corrected albedo of the participating media in 
equation (3) are redefined as R”. The specular reflectivity 
0’ is also introduced to describe the specular reflectivity 
of the boundary surfaces. 

A radiation element i can be regarded as either a vol- 
ume element or a surface boundary. Equation (2) is inte- 
grated along the path length S = A.r,/p without taking 
into account incident radiation. Then the radiant energy 
emitted from the radiation element in the direction ;r is 
given by 

dQ.r.,.,,,,, = A(1 -Q:,-Q’U,.,,. 

+fif’l(:][l -exp( -fi*A.~,/p)] dp. (4) 

The parameters in equation (4) are given in Table 1 
for various radiation elements. Integrating equation (4) 
over all discretized solid angles, the spectral radiation 
energy from the radiation element i. is given by 

PI.<., = [(I -Q:‘-Q;‘)Z,,,, +Qf’l:‘,l 

x i p,< [I - exp( - ~*A.Y,/~~)]I~,~ (5) 
i. I 

where 11~~ ~3~ and K are the discretized direction, the 
weight and the total number of discretized directions, 
respectively. 

I f  /I*A.u, >> I, the radiation element represents opaque 
solid. In the proposed radiation element method, both 
the surface and volume elements are accounted for by 
introducing the generalized form of radiation energy 
equations (4) and (5). Thus it is not necessary to dis- 
tinguish between different types ofelements. The effective 
radiation area A: [ 161 is introduced as follows : 

Finally. the rate at which radiation energy is emitted 
and isotropically scattered by the radiation element can 
be expressed in a generalized form as 

Q,,, = dt.,L; +Q:t,A; (7) 

where c, = 1 -!Zy -0,” and Q.,, , is the diffuse radiation 
transfer rate, which was introduced in previous reports 
[6, 151, for arbitrary diffuse and specular surfaces. 

In this section, the delta function approximation 
applied to the proposed method is briefly described. The 
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Table 1 
Apparent extinction coefficients and albedos for various radiation elements 

______ 

Radiation element s* w S-1” 
-___-~-..-~- 

isotropic medium B n 0 
Anisotropic medium p( 1 -Qrr,,G) n(l -rr,,:3)!‘(1 -QU,i3) 0 

Surface boundary p*s >> I Diffuse reflectivity Specular reflectivity 

phase function for an anisotropic medium is expanded in 
a series of Legendre polynomials as 

where P,(p) is a Legendre function of order 11, and u,> is 
the coefficient of the polynomial. Using the relationships 
in equations (9) and (lo), a, is determined by equation 
(11): 

I’ P,?(u) d,u = 0 (for n > 0) (10) 
-I 

The phase function is approximated using M+ 1 terms 
of Legendre polynomials and the delta function as 

where S( I- p) and f  are the delta function and the for- 
ward scattering fraction. respectively. The delta function 
is expanded in the following form [ 131 : 

(13) 

The one-term approximation of equation (12), i.e. 
M = 0, represents isotropic scattering. Considering the 
relationship between equation (13) and the first two terms 
in equation (8), and comparing the coefficients with the 
one-term approximation of equation (12), then the aniso- 
tropic phase function is expressed in terms of the delta 
function approximation as 

where (I, is the coefficient of P,(p) in equation (8). In the 
above expression, only (1 - a,/3) of the scattered rays are 
taken into account in the isotropic scattering. Since the 
absorbed fraction is not included in the scattering, the 
fraction of extinction in the medium does not change after 
the approximation in equation (14). Then the scaling 

corrections of fi and R are required as discussed by 
Wiscombe [ 131. 

Consequently the apparent extinction coefficient fi* 
and the corrected albedo 0” for the anisotropic medium 
can be expressed as 

p* = fi[(l -R)+Q(l -tr,/3)] = B(I -Ra,:3) (15) 

(16) 

b* and !Y for various cases are listed in Table 1. 
It should be noted that the apparent extinction 

coefficient is larger than the true extinction coefficient in 
the case of a strong back scattering medium or when 
LI, < 0. The transmitted and diffuse scattered rays are 
separated in the ray tracing process in REM’. The pro- 
cedure based on the delta function approximation is the 
same as the ray tracing procedure in REM’. 

The author [6] has introduced absorption and diffuse 
scattering view factors for radiation transfer at diffuse 
and/or specular surfaces, in which specular reflection is 
not included [lS]. Considering equation (4), we find that 
the rays isotropically scattered and transmitted through 
the radiation element can be treated in the same manner 
as those undergoing diffuse and specular reflection, 
respectively. Considering the radiation elements i and ,j. 
an extinction view factor Fl, is defined as the fraction of 
radiation energy leaving from radiation element i which 
is absorbed, isotropically scattered or diffusely reflected 
by radiation element j. 

Using equation (5). Ffi, can be written as 

Ff-, = f  f’:(~~)/l~[l -exp(-I(FA.y,ip,)] 
k-1 

x[l-exp(-~TA~,/~~)]~~~ (17) 

where ,fi&) is the fraction of the energy emitted from 
element i in the direction pk which reaches element j. It is 
noted that Ff’, for isotropic media can be applied to 
anisotropic media by introducing the scaling expressed 
in equations (15) and (16). As has been discussed in 
equations (4) and (5), the value &%x, >> 1 for a boundary 
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surface element. For the surface elements, only the posi- 
tive directions are considered, i.e. rays emitted towards 
the back face are not considered. 

Surface elements and volume elements are treated sep- 
arately for the calculation of view factors in the zone 
method [17]. It should be noted that surface and volume 
elements need not be treated separately in the proposed 
method by introducing equations (4) and (5). The above 
mentioned view factors, and generalized treatment can 
be achieved for both surface and volume elements. 

There are several ways to choose the discrete directions 
1~~ and the weighting factors w,. In the previous study [8] 
for complex 3-D configurations, the discrete directions 
were distributed uniformly over the solid sphere, or such 
that the weights of the discretized directions were 
uniform. In the present method, the discrete directions 
and weights are determined according to the discrete 
ordinates method [9] and are listed in Table 2. The ray 
emission at the boundary surface is conducted in a man- 
ner depending on the incident radiation as follows : 

Dtffise irradiation : 

Ray emission at surface boundary 1 is analyzed using the 
directions and weights in Table 2. 

Collimated irradiation : 

When the participating medium is exposed to a col- 
limated irradiation flux, q, = oTi, through boundary 
surface 1 with an incident angle O,,, the parameters in 
equation (5) are set as 

p, = costI,, w, = n, K= 1, E, = 1. (18) 
It should be noted that the symmetric condition with 
respect to the axis, which is used for the diffuse boundary 
and participating media, is not applied for the case of 
collimated irradiation. Numerical ray tracing is carried 
out according to the method similar to the previous 
report [8]. 

Once the extinction view factors have been obtained, 

Table 2 
Discretized directions p”i and their weights cci for various num- 
bers of discretization K [9] 

K vi 11‘k 

2 * 0.5000000 6.2831853 

4 kO.2958759 4.1887902 

iO.9082483 1.0943951 

6 &0.1X38670 2.7382012 

Lo.6950514 2.9011752 

+0.9656013 0.6438068 

8 fO.1422555 2.1637144 

kO.5773503 2.6406988 

~0.8040087 0.7Y38271 

kO.9795543 0.6849436 

the absorption view factors F;f, and the diffuse scattering 
view factors F,f, can be written as [8] 

E, Ffi, 
F;, = ___ 

(1 -!A;, 

p zz PF” f., i 
“’ (l-n;) 

(19) 

(20) 

By introducing F& and Ff,‘,, the radiation transfer 
under arbitrary thermal conditions can be determined 
for each participating radiation element and boundary 
surface reported previously [8]. The proposed method 
can be used to solve the radiation transfer equation 
including specular boundary surfaces by introducing 
F:, and F:‘,, as discussed in the next section. 

2.4. Radiation transftir 

The above-mentioned relations can be applied to the 
radiation transfer at each wave-length. However, in order 
to simplify the problem, the gray assumption is intro- 
duced in the following sections. Consider a system con- 
sisting of N-2 participating layers and two boundary 
surfaces, as shown in Fig. 1. We introduce the heat trans- 
fer rate of the irradiation energy. Q,;,,, and the emissive 
power Ql:, of the radiation element i : 

Q7 I = AI’E,~~oT;. (22) 
Considering the heat balance in an element and the 
diffuse radiation transfer rate per unit area Q.,,c defined 
in equation (7), the net rate of heat generation QXt and 
Q,,> are derived as 

Q Y.! = QT., - ~,Qc,.t (23) 

Q,., = Q7.i + WQ,;., (24) 

where n is the refractive index of element i. Then, equa- 
tions (23) and (24) can be rewritten as 

Qx., = QT.,- i F;,Q.r,, 
i- I 

(25) 

QJ.~ = Q7.c + c F::Q,,. (26) 
I- I 

The heat transfer rate of the emissive power Q7:! or the 
net rate of heat generation QX,, for each radiation element 
is given arbitrarily as a boundary condition. The 
unknown QX,t or QT., can be obtained by solving equa- 
tions (25) and (26) using the method described previously 
[6]. The relationships between T,, qk.( and Q7,;. Q., , are 
obtained as 

(27) 



Q.L 
(II,=- AX, 

(28) 

where A,s, and A.\-, are unity in equation (28). 
REM’ can be applied to volume and surface elements 

in a similar manner, and the surface heat flux per unit 
surface area, qx.,, and the volume heat generation rate 
per unit volume, c/~,,~ are treated in the same manner as 
‘1,. The radiation heat flux through the layer q”(.~) is 
derived as 

qKw = Y.\\ I + y,, (.I-‘) d.\-‘. (29) 

3. Results and discussion 

The proposed method, REM’. is applied to plane- 
parallel and isotropic scattering media, and the results 
are compared with existing exact solutions. 

We consider a participating medium of optical thick- 
ness t,). The medium is covered with isothermal black 
plates at temperatures T, and 7’,. Since REM’ can be 
used to analyze surface and volume elements in a similar 
manner, we specify radiation elements I and Nas bound- 
ary surfaces and the other elements i (i = 2.. .Y -- I) 
as volume elements with optical thickness AT E /iAs. as 
shown in Fig. I. 

First, we consider the case in which the medium does 
not generate heat i.e. l/,, = 0, and the temperatures at the 
boundary surfaces are T, = r,,, T, = 0. The dimension- 
less heat llux, given by equation (30), is calculated and 
compared with the exact solutions obtained by Heaslet 
and Warming [ 171: 

Y z &(‘IT,:). (30) 
The deviation from the exact solution AE is defined as 
AE = WYc,,,, - I. (31) 

The effects of AT and the partition number N on the 
dimensionless heat flux are shown in Fig. 2. The variation 

1 

0.8 

0.6 

0.4 

0.2 

0 

Fig. 1. Heat flux in adiabatic isotropc media. q,, = 0. 7, = T,;,, Fig. 3. Effect of number of dihcretlzed directions K on dimen- 
7, = 0. #r/c) = I. K = 8. slonless heat Aux. q,, = 0. 7‘1 : 7;,- T, = 0. $(/L) = 1, N = 102. 

of AEis expressed with a parameter AT or N. The number 
of discrete directions Kin equation (5) is set at eight. The 
deviation. AL, increases as the thickness of the volume 
element AT increases. The accuracy of Y is strongly 
dependent on AT. The deviation from the exact solution 
is less than 1% if the partition number N is chosen to be 
AT < 0.2. The present results show good agreement with 
the analytical solutions. Since the participating medium 
does not generate heat and is at radiative equilibrium, 
the solution is independent of the albedo of the medium 
[191. 

The effect of the discrete direction number K defined 
in equation (5) and given in Table 2 is examined in Fig. 
3. In order to investigate the effect of K, the number of 
elements is fixed at N = 102. The accuracy of the pro- 
posed method is improved as the number of discrete 
directions increases. The deviation from the exact sol- 
ution is less than 1% if K 3 6. If  we allow a 16% error 
in the estimation of the heat flux, then even K = 2 is 
useful. This rough approximation requires only one posi- 
tive and one negative direction, and the calculation pro- 
cess then becomes very simple. 

As an example of an isothermal medium, a non scat- 
tering participating medium is considered, i.e. G = 0, 
T,=T,,(i=2...N-l),T,=r’,=O.Thedimensionless 
heat flux on the black surfaces is simply given [19] by 

Y(0) = Y(t,,) = 2E,(r,,)- I (32) 
where E,(t,,) is an exponential integral function of the 
third order. 

The solution for an isothermal medium without scat- 
tering is independent of the partition number of the 
medium. Hence only one volume element is considered 
in the calculation in Fig. 4. An accurate solution can be 
obtained with K 3 6 except in the case of very small 
optical thickness as shown in Fig. 4. 

In summary for isotropic scattering media, the pro- 
posed method gives very accurate solution with small 
numbers of radiation elements and discrete directions. In 
particular. the method gives accurate results for inter- 
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Fig. 4. Dimensionless heat flux in isothermal non-scattering 
participating media, 0, = 0. 7: = To. T, = T, = 0. 

mediate optical thickness for which neither the optically 
thin nor thick approximations can be applied. 

Anisotropic scattering media covered with isothermal 
black surfaces are considered in this section. In order to 
avoid needless uncertainty due to the numbers of 
elements and discrete directions. N = 102 and K = 8 are 
chosen in the following analysis. 

As an example of simple anisotropic scattering media. 
the following linear anisotropic phase functions are con- 
sidered : 

c/h, = 1. 4,(p) = lf0.5/& &(/O = 1+/1 

where 4, is an isotropic phase function. 
(33) 

A pure scattering medium with R = I, T, = r,,, TV = 0 
is considered. The delta function approximation 
described in Section 2.2 is used to analyze the anisotropic 
medium. Participating media of various optical thick- 
nesses are subjected to a diffuse or collimated irradiation 
flux from boundary surface I. The reflectance 
p’< = I -Y(O) is compared with the exact solutions 
obtained by Busbridge and Orchard 1201. 

The deviations from the exact solutions [20] for difTuse 
irradiation and normally collimated irradiation, i.e. 
O,, = 0. are listed in Table 3. Very good accuracy is 
obtained for diffuse irradiation over the entire range of 
optical thickness. However, rather poor agreement is 
obtained for collimated irradiation and small optical 
thickness. 

In order to examine anisotropic media with more com- 
plex phase functions, isothermal anisotropic media at 
T,, = 0 (i = 2.. .N- I) is considered in Figs. 5 and 6. 
Strong forward scattering phase function $1 and back 
scattering phase function cbJ are taken into account, The 
phase functions & and (p3 are quoted from the ones by 
Lee and Buckius [I I]. 4; and $;I are referred to as F2 and 

B1, respectively, in ref. [I I]. These phase functions are 
plotted in Fig. 7. 

When the temperatures at the boundary surfaces are 
set at T, = r,,, T, = 0, the dimensionless transmitted flux 
7R and the reflected flux pR of the layer can be expressed 
as 

7K = Y(q) (34) 

PR = cos 0,) -Y(O). (35) 

The results obtained using the present method are com- 
pared with the exact solutions obtained by Lee and Buck- 
ius [I I] in Figs. 5 and 6. They are in very good agreement 
with each other. This indicates that not only strong for- 
ward scattering, as shown in Fig. 5. but also backward 
scattering media, as shown in Fig. 6, can be analyzed 
using REM’ with the delta function approximation. 

Most of the existing methods using delta function 
approximation adopt &Eddington approximation. The 
parameter M is set at I in &Eddington approximation. 
whereas M is set at 0 in the proposed method. The 
numerical treatment of the former becomes complicated 
as shown in an rl-bounce method by Naraghi and Huan 
[ 171. The numerical results obtained by REM’ with much 
simpler approximation of anisotropic scattering shows 
good agreement with exact solutions. 

From the above mentioned results, one can deduce that 
REM’ can be applied to three-dimensional anisotropic 
media using the delta function approximation. If  REM’ 
can be used to analyze anisotropic media with complex 
configurations and thermal conditions. a variety of appli- 
cations to both engineering and environmental problems 
can be expected. 

We consider a participating medium composed of sus- 
pended glass particles of diameter 4, = 10 pm, and inci- 
dent irradiation with a wavelength of i, = 10 ~cm. The 
wavelength is similar to that of a CO, laser. The real and 
imaginary parts of the complex refractive indices of the 
glass are 1.77 and I, 13. respectively [21]. 

The Mie scattering phase function 4(p) and the extinc- 
tion and scattering coeficients of the particles are cal- 
culated using the method proposed by Bohren and 
Hutrman [22]. The obtained phase function is shown in 
Fig. 7 as &. The coel-fcient u, is obtained by 

The calculated values of R and u, are 0.43 and 1.48, 
respectively. 

For the boundary surface element I+‘, vacuum plated 
pure nickel is examined. The normal reflectivity of the 
surface is 0.98 according to electromagnetic theory and 
the complex refractive index [23] for i = 10 pm. There- 
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Table 3 
Deviation from exact solutions for linear-anisotropic media, with 0 = 1 

Diffuse incidence 
R 

P.xm AE% 
Collimated incidence 

R 
Pemt 

4,, = 1 I 0.4466 -0.004 0.3413 0.074 

2 0.6099 -0.003 0.5175 -0.016 

5 0.7923 -0.007 0.7387 -0.017 
IO 0.8833 -0.035 0.8530 - 0.024 

f$, = 1+0.5p 1 0.4055 -0.209 0.2924 2.760 

2 0.5678 -0.055 0.4654 0.857 
5 0.7614 -0.013 0.6997 0.028 

10 0.8633 -0.023 0.8279 -0.023 
&= 1+p 1 0.3577 -0.607 0.2355 8.064 

2 0.5154 -0.158 0.4006 2.784 
5 0.7195 -0.003 0.6471 0.161 

10 0.8351 -0.014 0.7924 -0.014 

Fig. 5. Transmitted heat flux ? and reflected flux flR of strongly 
forward scattering media, 4(n) = I$,, r, = 0. T, = r,,, T, = 0. 

1 I,,, 
-Exact ’ 

1 1 I I , I 1 I I 

- - -Present 

Fig. 6. Transmitted heat flux gR and reflected flux pK of backward 
scattering media. d(n) = &. r, = 0, T, = r,,. T, = 0. 

fore, we specify the specular reflectivity at the back 
boundary surface as !A”, = 0.98 or the diffuse reflectivity 
as fig = 0.98. E, = 1 is specified for the other boundary 
surface 1. 

o,, = 0 
AE% 

Fig. 7. Phase functions of various anisotropic media 

The participating medium is subjected to diffuse or 
collimated irradiation from boundary surface 1. When a 
collimated flux y< = OTT is irradiated at an incident angle 
8,,, the heat flux from surface I is q,.cos 6,. The heat flux 
is ari for diffuse irradiation. 

The transmitted flux for pure scattering isotropic 
media is calculated for various H,, using the present 
method, and compared with exact solutions [9]. The 
present results show very good agreement with the exact 
solutions. 

The transmitted heat flux rR defined in equation (34) is 
examined for various conditions. Collimated irradiation 
flux at an incident angle (I,, = 0 or diffuse irradiation is 
applied on the participating media, and the results are 
shown in Fig. 8. .c\diabatic (q.$ = 0) or isothermal 
(T = 0) condition is considered. The transmitted flux for 
a specular back surface is smaller than that for a diffuse 
back surface when collimated incident flux is applied. 
This tendency is significant when the optical thickness is 
small and the layer is adiabatic. The difference is small 
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Fig. 8. Transmitted heat flux for various conditions. Collimated Fig. 10. Reflected flux of isothermal and anisotropic media 
irradiation is normal to the surface. against collimated incident irradiation. 

for large optical thickness, diffuse irradiation and/or iso- 
thermal conditions. The transmitted flux for an isotropic 
medium is smaller than that for an anisotropic medium 
in most cases. 

The effect of the incident angle of the collimated flux 
is examined in Fig. 9. Specular or diffuse back surface 
is examined. The thermal condition of the medium is 
adiabatic or isothermal. The transmitted flux is similar 
to that in Fig. 8. A specular back surface gives a smaller 
transmitted flux than a diffuse surface for small optical 
thickness, collimated irradiation and small O,,. The trans- 
mitted fluxes for diffuse and specular boundaries are 
similar for the case of isothermal media. 

The reflected flux pK, given by equation (35) for iso- 
thermal media. is shown in Fig. 10. The value for adia- 

batic condition is expressed as # = cos (I,, - ?, since the 
radiation flux is constant throughout the layer. As shown 
in Fig. IO, the reflected flux for a specular back surface 
is larger than that for a diffuse surf:dce for small optical 
thickness and collimated irradiation. The effect of the 
specular boundary diminishes if the optical thickness is 
larger than 4 under the present conditions. In the 

0.03 ) 
e*=o” ,30” 

/ 

60" 4v=o 

I -Diffuse Back Surface I 
0.01 k - Specular Back Surface 

T,=O 1 

-1 2 3 4 5 6 7 8 910 
TO 

Fig. 9. Transmitted heat flux subjected lo irradiation with sari- 
ous incident angles O,,. 

-Diffuse Back Surface 
- - - Specular Back Surface 

optically thick region, the reflected flux is constant, and 
independent of the optical thickness. 

4. Conclusions 

The radiation element method by ray emission model. 
REM’, is applied to plane-parallel absorbing, emitting 
and scattering media with arbitrary thermal conditions 
in order to verify the applicability to anisotropic media. 
The surface boundary can be specular and/or diffuse 
with arbitrary thermal conditions. Diffuse or collimated 
irradiation can be applied at the boundary. The delta 
function approximation is adopted to scale the aniso- 
tropic scattering. REM’ can be used to analyze a variety 
of thermal and boundary conditions. simply by changing 
the parameters of the radiation elements. 

The accuracy of results obtained using REM’ is con- 
firmed by comparing them with existing solutions for 
isotropic scattering media. The proposed method gives 
very good accurac) for small numbers of radiation 
elements and discrete directions. The deviation from the 
exact solution is less than 1% when the optical thickness 
of the radiation elements is less than 0.2 and the number 
of discrete directions is larger than six. In particular. the 
method gives accurate results for intermediate optical 
thicknesses, for which neither the optically thin nor thick 
approximations can he applied. 

REM’ with the delta function approximation is 
applied to various anisotropic media, and the results 
obtained are compared with existing exact solutions. 
They show very good agreement. even for the cases of 
strong forward scattering and backward scattering 
media. Consequently. REM’ can be applied to three- 
dimensional anisotropic media using the delta function 
approximation. 

Radiation transfer for obliquely incident flux is ana- 
lyzed. and the effects of specular and diffuse boundary 
surfaces are examined. The phase function of particles is 
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calculated using the Mie theory. The transmitted flux for 
a specular back surface is smaller than that for a diffuse 
surface when normally incident collimated flux is applied. 
This effect is significant when the optical thickness is 
small and the layer is adiabatic. The effect is small for 
large optical thickness, diffuse irradiation and/or iso- 
thermal conditions. The transmitted flux for isotropic 
media is smaller than that for anisotropic media in most 
cases. 
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